

Lactate Assay Kit

Catalog No.: abx298983

Size: 96 tests

Detection Range: 0.06 mmol/L - 8.0 mmol/L

Sensitivity: 0.06 mmol/L

Storage: Store all components at 4°C. Store the Chromogenic Reagent in the dark.

Application: For detection and quantification of Lactate content in serum, plasma, and tissue homogenates.

Introduction

Abbexa's Lactate Assay Kit is a quick, convenient, and sensitive method for measuring and calculating Lactate content. D-Lactate Dehydrogenase catalyzes the reaction of Lactate with NAD+ to produce Pyruvic acid and NADH respectively. Concurrently, NBT is reduced, producing a purple-colored product with an absorbance maximum at 530 nm. The intensity of the color is proportional to the Lactate content, which can then be calculated.

Kit components

- 1. 96-well microplate
- 2. Buffer Solution: 12 ml
- 3. Enzyme Stock Solution: 120 µl
- 4. Chromogenic Reagent: 2 × 1.2 ml
- 5. Stop Solution: 24 ml
- 6. Standard (10 mmol/L): 2 ml
- 7. Plate sealer: 2

Materials required but not provided

- 1. Microplate reader (530 nm)
- 2. Double Distilled water
- 3. Normal Saline (0.9 % NaCl)
- 4. PBS (0.01 M, pH 7.4)
- 5. Pipette and pipette tips
- 6. 1.5 ml microcentrifuge tubes
- 7. Centrifuge
- 8. Vortex mixer
- 9. Incubator

Protocol

A. Preparation of samples and reagents

1. Samples

Isolate the test samples soon after collecting and analyze immediately or aliquot and store at -20°C or -80°C for long-term storage. Avoid multiple freeze-thaw cycles.

The following sample preparation methods are intended as a guide and may be adjusted as required depending on the specific samples used.

- Serum/Plasma: Serum samples can be tested directly.
- Tissue Homogenates: Carefully weigh approximately 20 mg of tissue and wash in cold PBS (0.01 M, pH 7.4). Homogenize the tissue at 4 °C in 1:9 weight/volume PBS (e.g. 20 mg tissue, 180 µl PBS), then centrifuge at 10,000 × g for 10 minutes. Collect the supernatant and store on ice for detection. The protein content of the sample should be determined separately (abx097193).

It is recommended to carry out a preliminary experiment to determine the optimal dilution factor of samples before carrying out the formal experiment. Dilute samples into different concentrations with normal saline (0.9 % NaCl) or PBS (0.01 M, pH 7.4), then carry out the assay procedure. The recommended dilution factor for different samples is as follows (for reference only):

Sample Type	Dilution Factor		
Human plasma	1		
Human serum	1		
Rat plasma	1		
Rat serum	1		
Mouse serum	1		
Rabbit serum	1		
10 % Rat Kidney tissue homogenate	2-3		
10 % Mouse brain tissue homogenate	1		

Note:

- Fresh samples or recently obtained samples are recommended to prevent degradation and denaturalization that may lead to erroneous results.
- Lysis buffers may interfere with the kit. It is therefore recommended to use mechanical lysis methods for cell lysates and tissue homogenates.

2. Reagents

- Enzyme Stock Solution: Keep on ice for use.
- Enzyme Working Solution: Prepare fresh before use. Dilute Enzyme Stock Solution in Buffer Solution to a 1:100 ratio (e.g. add 5 µl Enzyme Stock Solution to 500 µl Buffer Solution).
- Standards: Prepare a fresh set of standards before each run, as summarized in the following table:

Standard Concentration (mmol/L)	0	1	2	4	5	6	7	8
10 mmol/L Standard (μl)	0	20	40	80	100	120	140	160
Double distilled water (µI)	200	180	160	120	100	80	60	40

Note:

• Allow all reagents to equilibrate to room temperature before use.

B. Assay Procedure

- 1. Add 5 μl of standard to the standard wells, and 5 μl of sample to the sample wells.
- 2. Add 100 µl of Enzyme Working Solution to each well.
- 3. Add 20 µl of Chromogenic Reagent to each well.
- 4. Mix thoroughly and incubate at 37 °C for 10 minutes.
- 5. Add 180 µl of Stop Solution to each well and mix thoroughly.
- 6. Measure the OD of each well with a microplate reader at 530 nm.

C. Calculation of Results

Plot the standard curve, using the average OD of duplicate standard dilutions (adjusted for the blank) on the y-axis, and their respective concentrations on the x-axis. The curve should form a straight line, described by the formula y = ax + b. Based on this curve, the concentration of Lactate in each sample well can be derived with the following formulae:

1. Serum and Saliva samples:

Lactate (mmol/L) =
$$\frac{\Delta A_{530} - b}{a} \times f$$

2. Tissue samples:

Lactate (mmol/g protein) =
$$\frac{\Delta A_{530} - b}{a} \times \frac{f}{C_{pr}}$$

where:

9:	0
ΔA_{530}	OD _{Sample} – OD _{Blank}
a	Gradient of the standard curve $(y = ax + b)$
b	Y-intercept of the standard curve $(y = ax + b)$
f	The dilution factor of sample
C _{pr}	Protein concentration of sample (g prot/L)