Specificity: KAT8 shRNA Plasmid (Rat) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: KAT8 siRNA (Rat) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: KAT8 shRNA Plasmid (Mouse) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: KAT8 siRNA (Mouse) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: KAT8 siRNA (Human) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: KAT8 shRNA Plasmid (Human) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: KAT6B siRNA (Mouse) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: KAT6B shRNA Plasmid (Mouse) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: MEAF6 siRNA (Mouse) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: MEAF6 shRNA Plasmid (Mouse) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: KAT7 shRNA Plasmid (Mouse) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: KAT7 shRNA Plasmid (Rat) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: KAT7 siRNA (Rat) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: KAT7 siRNA (Mouse) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: KAT7 siRNA (Human) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: KAT7 shRNA Plasmid (Human) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: KAT6A shRNA Plasmid (Rat) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: KAT6A siRNA (Rat) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
We use cookies necessary for the function of our website, to improve your experience, analyse our traffic, and cookies that optimise the performance. To learn more about our cookies, please read our Cookie Notice.