Specificity: DNAJB13 siRNA (Human) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: DNAJB13 shRNA Plasmid (Human) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: DNAJB13 siRNA (Mouse) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: DNAJB13 shRNA Plasmid (Mouse) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: SPATA4 siRNA (Mouse) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: SPATA4 shRNA Plasmid (Mouse) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: SPATA4 siRNA (Human) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: SPATA4 shRNA Plasmid (Human) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: SPATA3 siRNA (Human) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: SPATA3 shRNA Plasmid (Human) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: SPATA3 siRNA (Mouse) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: SPATA3 shRNA Plasmid (Mouse) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: TEX101 siRNA (Human) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: TEX101 shRNA Plasmid (Human) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: SUN5 siRNA (Human) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: SUN5 shRNA Plasmid (Human) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
Specificity: SPATA25 siRNA (Mouse) is a target-specific 19-23 nt siRNA oligo duplexes designed to knock down gene expression. Purity: > 97% Form: Lyophilized
Specificity: SPATA25 shRNA Plasmid (Mouse) contains 3 different target-specific plasmids each encoding 19-23 nt (plus hairpin) shRNAs designed to knock down gene expression. Each plasmid contains a resistance gene for the selection of cells stably expressing shRNA. Form: Lyophilized
We use cookies necessary for the function of our website, to improve your experience, analyse our traffic, and cookies that optimise the performance. To learn more about our cookies, please read our Cookie Notice.